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The rheological behaviour of a dilute suspension of spherical particles of condensed 
phase dispersed in its own slightly rarefied vapour gas is investigated on the basis of 
suspension theory (Batchelor 1970) and generalized slip-flow theory for a two-phase 
system of a gas and its condensed phase derived from the Boltzmann equation. The 
rarefaction of the gas and the phase-change process at  the interfaces of the particles 
have the effect of reducing the Einstein coefficient of #, volume fraction, in the expres- 
sion for the effective viscosity in the suspension. In  the case in which the pure rare- 
faction effect alone enters the problem, the coefficient is $( 1-2-702 K), where K is 
the Knudscn number, a rarefaction parameter defined by K = 1/L, 1 and L being 
respectively the mean free path of gas molecules and the radius of a spherical particle. 
When both the rarefaction and the phase-change process are taken into account, 
this becomes i(1-3-533K). These modifications are not small, even at ordinary 
pressures, when the size of the particles is of the order of microns. 

1. Introduction 
One of the important mechanical properties of the dilute suspension of spherical 

particles in a fluid of viscosity p is the effective viscosity p*, which can be expressed as 

P* = +/v+ o(#2)1, (1.1) 

where # is the fraction of the volume occupied by the suspended particles. The co- 
efficient p was calculated to be 8 for rigid spherical particles by Einstein (1906, 191 l),  
and to be (p++p’)/(p+p’) for spherical fluid particles of viscosity p‘ by Taylor 
(1932). These values of p* have been derived on the assumption of no slip and no 
change of phase a t  the surface of the particles, in addition to the usual assumptions 
that the particles are so far apart to be hydrodynamically independent of each other 
and that the effect of inertia on the motion is negligible. When we think of small 
particles floating in a gas, we must be careful about rarefaction effects which often 
induce flows of various kinds that cannot be anticipated within the framework of 
continuum theory, such as the thermal creep flow due to the non-uniform temperature 
distribution of a gaa over a boundary surface (Kennard 1938, p. 327; Sone 1966), and 
the thermal stress slip flow due to the non-uniform normal temperature gradient over 
a surface (Sone 1972). The degree of rarefaction is measured by the Knudsen number 
K, the ratio of the molecular mean free path I to the characteristic length of the system 
L (e.g. the radius of a typical particle), and it becomes appreciable when L becomes 
small. Even a t  ordinary pressures in air we have K N 0.1 when L 1: 1 pm. It may now 
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be worthwhile to investigate the effects of rarefaction, including the phase change at  
the interface between the gas and the condensed phase, on the effective viscosity of 
the suspension as a whole, and this is the purpose of this paper. 

For this study, we consider a dilute suspension in which small spherical particles of 
condensed phase are suspended in its slightly rarefied vapour gas (in the sense that 
the Knudsen number is small but not negligible) with the same temperature as that 
of the particles. The appropriate analysis of the motion of slightly rarefied gases must 
be based on kinetic theory, and we use the asymptotic analysis for small Knudsen 
numbers for evaporation (or sublimation) and condensation by Sone & Onishi (1978), 
thus avoiding the trouble of dealing with the kinetic equation as it stands. This analysis 
gives a generalized slip flow theory for a two-phase system of a gas and its condensed 
phase derived systematically from the linearized kinetic equation, and gives a uni- 
formly valid description of the steady behaviour of gas coexisting with its own 
condensed phase of arbitrary shape (with certain smoothness) and configuration. An 
outline of the theory is given in the next section. 

2. Outline of the asymptotic theory for a two-phase system 
The asymptotic theory by Sone & Onishi (1978) for small Knudsen numbers is a 

theory which has reduced a kinetic treatment of given problems for small Knudsen 
numbers to a hydrodynamic one. This is based on the following assumptions: (i) the 
gas motion is fully described by the Boltzmann-Krook-welander equation (Bhatnager, 
Gross & Krook 1954; Welander 1954; Kogan 1958); (ii) the interaction of gas molecules 
with the condensed phase is of diffusive type characterized by the condition of the 
saturated (vapour) gas at  the same temperature as that of the condensed phase (see 
for example Pao 1971); (iii) the deviation of the system under consideration from a 
stationary equilibrium state is so small that the governing equation and the boundary 
condition may be linearized, i.e. the Mach number (the ratio of the characteristic 
velocity of the motion of the system, e.g. the suspension, to the sound speed at  the 
reference state) is very small and the second and higher orders are completely neglected 
since the Mach number is a measure of the deviation in the standard non-dimensional 
form of the kinetic equation. 

According to the theory, the desired solution can be obtained in terms of the Hilbert 
part (subscript H )  and the Knudsen-layer part (subscript K ) ,  i.e. 

f = fH +fK, 

where f represents any one of the perturbations of hydrodynamic quantities (such as 
gas velocity, pressure, temperature, stress, etc.) from a certain equilibrium reference 
state. The Hilbert part fEI has a length scale of variation of the order of the character- 
istic length of the system L (e.g. the radius of a representative particle) which is much 
larger than the mean free path 1 of gas molecules and dominates over the whole flow 
region except in general a thin layer of the thickness of the order of the mean free 
path adjacent to the interface between the gas and the condensed phase. The Knudsen- 
layer part fK has a length scale of variation of the order of the mean free path and is 
appreciable only in the thin layer, called the Knudsen layer, expressing the Knudsen- 
layer correction to the Hilbert part in the immediate vicinity of the interface. far is 
assumed to vanish sufficiently rapidly with the distance from the interface (e.g. a 
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few mean-free paths away from it). Each part is obtained in a power series of a quantity 
of the order of the Knudsen number, namely 

fH =ff io)+kf&)+k2fg)+  ..., (2.2) 

fK = f # ’ + k f g ) + k 2 f & ) +  ... . (2.3) 

The parameter E is defined in terms of the Knudsen number K by 

and the mean free path I is related to the viscosity ,u of the gas as 

/L = P 0 ( 8 R T O / ~ ) 4  I ,  (2.5) 

where R is the gas constant, Po a reference pressure and To a reference temperature. 

Stokes system of hydrodynamic equations at  any order of the Knudsen number : 
The Hilbert part of the velocity, pressure and temperature satisfies the following 

vpg = 0, v. u p  = 0, vpg+l) - V2U(m) H = 0 9 (2.61, (2.71, (2.8) 

VZT(Hm) = 0 , P H  (m) - -PH (m)- TH (m) 3 (2.9), (2.10) 

where m = 0, 1, 2, ..., Po(i +p), (2RT0)iu, To(l + T )  and po(l + p )  are the gas pressure, 
velocity vector, temperature and density, respectively, and po is the reference density 
defined by po = Po(RT0)-l. V is the gradient operator with respect to x, Lx being the 
rectangular co-ordinates. Equation (2.10) is the linearized form of the equation of 
state for an ideal gas. It is noted that (2RT0)* is taken as the reference velocity which 
is of the order of the sound speed a t  temperature To. This system of equations governs 
the whole flow field except the thin Knudsen layer attached to the interface. 

The boundary conditions at  the interface appropriate for this system of equations 
(2.6)-(2.9) are obtained by the Knudsen-layer analysis and are given in the form of 
the generalized slip conditions in appendix A [(A l), (A a), (A 5), (A 8), (A 11) and 
(A 12)]. Together with the boundary conditions, is also listed in appendix A the 
Knudsen-layer part of the solution which is expressed in terms of the universal 
functions and the values of the Hilbert part evaluated at  the interface surface. 
Furthermore two other important quantities, i.e. the stress tensor and heat-flow 
vector, and their Knudsen-layer parts are also given there. 

Incidentally, a brief mention is made here of the local stress [denoted by Po(I + P) 
in appendix A] which will be needed in section 4. This has the following parts: 

PO(I + p) = PO(! + PH+ pg), (2.11) 

V . P  = 0, V.P, = 0. (2.12) 

where I is the unit tensor, and P and P, both satisfy the following equations 

The fact that the divergence of the stress is zero is easily shown from the original 
linearized Boltzmann-Krook-Welander equation, and the second equation is none 
other than the equation (2.8). If the points outside the thin Knudsen layer at 
the interfaces of the particles are considered, the contribution to the stress from the 
Knudsen-layer part is negligible and the stress (2.11) can be expressed only by the 
Hilbert part. Substituting the expression for PH from (A 17) in appendix A, we have 

Po(I+P) = Po(l+p$))I-kPolI,  (2.13) 
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where II, to the order of k ,  is given by 

II = - ( p g  + k&)) I + 4 + k(al - VV$). (2.14) 

The first term on the right-hand side of (2.13) depends on the choice of the reference 
pressure and is of no particular importance. kPo can be replaced by the viscosity ,u 
of the gas using the relations (2.4) and (2.5), i.e. kPo = ,u(2RT0)* L-l. It is noted that 
from (2.13) and (2.14) when the temperature field in the continuum limit is uniform, 
i.e. 7g) = 0, the stress tensor for slightly rarefied gases at  points outside the Knudsen 
layer has exactly the same form as that for Newtonian fluids. 

In the next section we study a fundamental problem for a suspension, namely the 
motion of a slightly rarefied gas around a particle of the condensed phase immersed 
in a pure straining motion, using the results of this section. 

3. Velocity and pressure fields around a spherical condensed phase in a 
pure straining motion 

Consider the following problem: a spherical condensed phase of radius L maintained 
at  a constant temperature To is placed in a uniform pure straining motion of its own 
gas whose temperature and pressure at infinity are To and Po, respectively, Po being 
chosen as the saturated gas pressure corresponding to To for simplicity. We assume 
that the ratio of the viscosity of the gas to that of the condensed phase (liquid or 
solid) is so small that the internal flow of the condensed phase can be neglected.? 
The uniform pure straining motion is specified by the constant symmetric rate-of- 
strain tensor E with the trace (E) = 0. 

Let L, To, and Po be taken as the reference length, temperature and pressure, re- 
spectively, and also the origin of the co-ordinate system be at  the centre of the con- 
densed phase. Then from the choice of the reference state, p ,  and 7, are all zerot 
which appear in the generalized slip conditions in appendix A, and also u, = 0 from 
the symmetry of the problem. Furthermore, we have the following conditions to be 
satisfied at  infinity, 

where r = (x . x)* and e = e(O) + ke(l) + . . . , e being the non-dimensional rate-of-strain 
tensor defined by e = (2RT0)-* LE. 

From (2.6), we immediately obtain the solution for&) subject to (3.1) a t  infinity as§ 

p‘O’(x) = 0, (3.2) 

which gives from (A 4) the normal velocity a t  the interface of the condensed phase 

t Although the viscosity ratio may not be sufliciently small in the case of gas-liquid systems 
(e.g. the ratio N 7 x 10-3 for H,O at ordinary conditions), we believe that the qualitative 
nature of the problem is retained under this assumption. 

$ The effect of surface tension on this pressure is small in ordinary conditions (see appendix B), 
and will be neglected. On the other hand the particles may be considered to be held spherical 
by the surface tension a, which is equivalent to the assumption that a(pLE)-l % 1, E being a 
representative magnitude of E. 

8 We shall henceforth omit the subscript H, on the understanding that the liydrodynamia 
quantities that appear in this section and the following refer to  the Hilbert part unless otherwise 
stated explicitly. 
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(evaporation or condensation rate). This normal velocity, together with (A l), con- 
stitutes the boundary condition for the velocity u(0) and also provides the boundary 
condition for the temperature ~ ( 0 )  from (A 5). Namely we have 

Equation (3.3) shows that at  the present stage of approximation (continuum limit), 
no evaporation and condensation process occurs a t  the interface. The solution to 
(2.7)-(2.9) with m = 0 subject to  these conditions (3.3) and (3.4) is easily obtainable 
(Landau & Lifshitz 1966, Q 22; Batchelor 1967, Q 4.11), and it is given as 

with 
a, = - 5 ,  bo = -1 .  (3.6) 

The Knudsen-layer part does not exist in this stage of approximation because 
u(O).n = 0 at  r = 1 [see (A 2), (A 3), (A 6), (A 7) and (A 15)]. 

We now proceed to the next approximation. Since p(l) is already determined in 
(3.5), we can easily find the boundary conditions for the velocity u(1) and the tem- 
perature dl)from (A 8), (A 11) and (A 12), i.e. 

5 
u(l).t = -5kon.e(0).t, u(l).n = --n.e(O).n, c,* 

ko = - 1.016, C,* = - 2.132, d,* = - 0.4467,) 

at r = 1, and also from (3.1) 

asr+co. 
It should be noted that the normal velocity in (3.7) arises solely from the pressure 

difference from the equilibrium pressure and is responsible for the evaporation (or 
sublimation) and condensation process, while the tangential velocity comes from the 
pure rarefaction effect regardless of whether or not the phase-change process occurs. 

u(1) + e(1). x, p(2) + 0, 7(1) + 0, (3.8) 

The solution to (2.7)-(2.9) with m = 1 subject to (3.7) and (3.8) is 

I 
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F'IGURE 1. x': the principal axes. The thiok arrows show the direotion of 
maas flow at the interface of the condensed phase. 

a1 = -5(&+3k0), bl = -5k0. (3.10) 

The Knudsen-layer part for the velocity, pressure and temperature can be obtained 
immediately from (A 9), (A lo), (A 13), (A 14) and (A 15) in appendix A, but is not 
written down here. We note, however, that the Knudsen-layer parts of the pressure 
and temperature appear due to the occurrence of the evaporation and condensation 
process at the interface, while the Knudsen-layer part of the tangential velocity, 
which is the only non-zero component, arises from the pure rarefaction effect of the gas. 

and 

The force F acting on the condensed phase is shown to be 

F = - Po[I+P].ndA = 0, 
/A 

where n is the unit vector outward normal to the (dimensional) surface A which en- 
closes the condensed phase and lies entirely in the gas outside the Knudsen layer. 
The couple acting on it is also zero. These results are clear from the symmetry of the 
problem. It may be interesting to note that when the spherical condensed phase is 
placed in its own uniform gas flow U, the force acting on it is found to be 

F=Gn/LU [ 1 + -  q 2 ; :  -+ko ) K ] , (3.11) 

where (#&) [(2C,*)-l+ k,] = - 1-108 (Onishi 1977b, where k is used instead of K). 
The total mass flow M from the interface of the condensod phase is given by 

M = ~ A 0 p , ( 2 ~ ~ 0 ) + u . n ~ ~ 1  

where u is the total velocity (Hilbert part + Knudsen-layer part) and A, is the (dimen- 
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sional) area of the interface. Taking into account (3.3), (3.7), (A 3), (A 10) and the fact 
that e: I = 0, we easily find 

M = p,(2RTo)* k dl). ndA = 0, 
/ A o  

which means that the total mass of the condensed phase is always conserved. This is 
also true for the caw of the uniform streaming problem (Onishi 19773). This seems 
to be quite natural in view of the symmetry of the problem. Since e is a symmetric 
tensor, we can find the principal values (ei, e;, ei) and the corresponding principal axes 
(zi, xi, xi), namely 

x. e .x = eizi2 + e;z;* + eizia.  

Suppose that e l  is positive and ei is zero, then e; must be negative and e; = - ei because 
ofthe condition e: I = 0. Sinceu(l).nisproportionaltox.e.x(thecoefficientispositive) 
from (3.7), n is positive about points A and C and negative about points B and D 
(see figure 1). These outward fluxes about A and C are completely balanced by the 
inward fluxes about B and D. 

4. Bulk stress and effective viscosity of a dilute suspension in a slightly 
rarefied gas 

Consider a suspension of randomly dispersed particles in a slightly rarefied gas. 
The inertia forces of the particles are assumed to be negligible and no external force 
and couple act on them. Following the suspension theory by Batchelor (1970) (see 
also Batchelor t Green 1972), we define the deviatoric part of the bulk stress C for the 
suspension in a slightly rarefied gaa by 

C-g(z:l) = - P,[a-&l(e:l)]dV ;J V 

1 
~ O [ O  - iI( U: I)] dV + 7 X P'[o - &I( Q: I)] dV,  (4.1) 

where Po a is the local stress-/ and V is the (dimensional) volume which contains many 
particles and whose linear dimension is large compared to the average distance 
between the particles. V ,  isthe (dimensional) volume such that within it only one 
particle and the Knudsen layer around it are included; the summation extends over 
all such volumes in V .  Since V - L' V ,  occupies the wholegrts region outside the Knudsen 
layers attached to the particles, the integrand of the first term on the right-hand side 
of (4.1) may be replaced by the corresponding Hilbert part, i.e. by (2.13) with (2.14), 
giving 

'J Po[a - &l(u: I)] dV v v-cvo 

+nu(o))+k(u(1)n+nu(1)-nV7(0))}dA, (4.2) 

where A, is the (dimensional) surface area of the volume V, which involves the Knudsen 
t In the gas phese, this looel stress is minus the stress tensor (Hilbert part + Knudsen-layer 

part) defined in appendix A. 



182 Y .  Onishi 

layer completely, and n is the unit outward normal to A,. The symbol ( ) denotes the 
volume average over V .  

The second term on the right-hand side of (4.1) can be converted into the surface 
integral over A,  using the divergence theorem to give 

The integrand of the surface integral is the value (with minus sign) of the Hilbert 
part of the stress evaluated on the surface A ,  outside the Knudsen layer. It is noted 
that the justification of this conversion in the present case when some components of 
the stress tensor have very large values within the interfacial layer between the gas 
and the particles can be given by the same arguments as was done by Batchelor 
(1970). 

On combining (4.2) and (4.3), we obtain 

Z-+l(Z:l) = k P o { ( Q +  k(a l -VV7(0)) )+Z@).  (4.4) 

The first term on the right-hand side is the deviatoric stress that would be generated 
in the ambient gas in the absence of the particles. It is noted that kP, is related to 
the viscosity ,u as kP, = ,u(2RT0)* L-l. The second term X@) is the particle stress due 
to the presence of the particles and is given by 

where S is the force dipole strength or stresslet strength resulting from thereplacement of 
ambient gas by the particle and depends on the size, shape, constitution of the particle 
and on the relative positions of the other particles, as well as on the bulk motion 
imposed on the suspension. Again note that the integrand of (4.6) is expressed by the 
Hilbert part of the quantities and is evaluated on A ,  outside the Knudsen layer. 

When the suspension is so dilute that the gas motion near one particle is virtually 
independent of the presence of the others, and also the temperature field in the con- 
tinuum limit is uniform everywhere (i.e. 7(0)  = 0 ) ,  the calculation of S to the f i s t  order 
of the volume fraction # is reduced to solving the gas motion around a typical particle 
immersed in a uniform pure straining motion and finding the symmetric part of the 
constant traceless tensor corresponding to the force doublet of the disturbance motion 
caused by the presence of the particles (see Batchelor 1970). 

Since we are considering here a dilute suspension whose temperature is uniform in 
the continuum limit, it is a simple matter to  find the term which corresponds to the 
force doublet of the disturbance motion due to a single particle in the expressions for 
hydrodynamic quantities, e.g. pressure. Consequently using the results in the previous 
section, we have for S 

S = 4nL3kP0[ - +(ao + ka,) el. (4-7) 

The bracketed term is the contribution from the force doublet and is correct to order k. 
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Substituting (3.6) and (3.10) into (4.7) and rewriting it in terms of the Knudsen number 
K instead of the expansion parameter k, we obtain 

and 

Iln 2 (2 c,* + 3k,) = - 3.533. 

Hence for a dilute suspension of spherical particles of condensed phase in its slightly 
rarefied gas, the particle stress is 

to order #, where 9 is the volume fraction defined by V# = Z$nL3. Thus the coeffi- 
cient in the expression (1.1) for the effective viscosity will be Q( 1-3-533 K). When 
the effect of rarefaction alone enters the problem, the particle stress to order # is given 

C@) = 2pE{g[ 1 + #Jn ko K]} #, (4.10) 

Finally, it may be interesting to compare (4.9) with (3.11) where the apparent 

by 

where #,Ink, = - 2.702. 

viscosity of the gas would be considered to be p( 1-1.108 K). 

The present work was carried out while the author was staying as a Senior Visitor 
at the Department of Applied Mathematics and Theoretical Physics, University of 
Cambridge. He wishes to express his thanks to Professor G. K. Batchelor for his 
kind hospitality and also to Dr D. J. Jeffrey and Dr J. M. Rallison for their useful 
discussions and general comments on suspensions. 

Appendix A 
(1) The general slip boundary condition for hydrodynamic quantities a t  the inter- 

face between the condensed phase and its gas phase, and the Knudsen-layer part 
which is the correction to the Hilbert part near the interface: 

(ug -up).  t = 0, (A 1)  

up.t = 0, ug).n = 0, (A 21, (A 3) 
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up.n = 0, 

+n.eo.n 

@6 

p p )  = &')+TP) (m = 0, 11, 

C,* = -2.132039, dz = -0.446749, 

C, = 0.558437, 

C, = 0.820 853, 

d, = 1*302716, 

d, = 0.330 345, 

C7 = - 0.380569, 

ko = - 1.016 191, 

K ,  = - 0.795 186, 

d7 = - 0.131 574, 

K ,  = - 0.383 161, 

where e,,, (m = 0 , l )  is the rate-of-strain tensor defined by 

%(X) = vuy  + ( V u p ) T  

but here it is evaluated at the interface.' ( 2RT0)* u,, and To( 1 + 7,) are the velocity 
(with u,.n = 0) and the temperature of the condensed phase, respectively, and 
Po( 1 +p,) is the saturated gas pressure corresponding to To( 1 +T,) (the effect of 
surface tension on this pressure is considered in appendix B and found to be small) 
and is uniquely related to the temperature (see Onishi 1977a), but the explicit func- 
tional form is not necessary here. These parameters u,, T, and p ,  are also expanded 
in terms of k as in (2.2). n and t are the unit outward normal vector and any tangential 
unit vector to the interface, respectively, and 2~ = ( K , + K ~ ) ,  L-~K, and L - ~ K ,  being 
the principal curvatures taken negative when the corresponding centre of curvature 
lies in the gas phase. The functions Q:, Oz,  Q,, O,, Q,, 0 6 ,  a,, O,, Y,, and Y, are the 
universal functions of 7 only, a stretched co-ordinate normal to the interface defined 
by the relation 

x = nk7 + XW(C1,  Cz), 

where x, is the equation of the interface, and 6, and are (unstretched) co-ordinates 
within a parallel surface 7 = constant. These functions decay rapidly (more rapidly 
than 7 - N  where N is any positive integer) as 7 --f co. The numerical values of these 
functions and some of their integrals are given in the original paper (Sone & Onishi 
1978). 

(2) The stress tensor and heat-flux vector of the gas and their Knudsen-layer parts: 
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n.Pg.n = 0, n.P%.t = 0, 
n.Ps.n = -3~ug.nY(y), 
n.P(#.t = #t.V(ug.n)Y(v), 

QP = 

Qp.n = 0, Qg).n = 0, 

18 5 

and 

Y(y) = s," [a,* + 03 dy', "(0) = 0.23886, 

where Po( I + P) and Po( 2RT0)) Q are the stress tensor and heat-flux vector of the gas, 
respectively, and I is the dyadic idemfactor. The viscosity p of the gas is related to 
the Knudsen number through (2 .4 )  and (2.5),  and the thermal conductivity A is 
equal to $ R p  in the Boltzmann-Krook-Welander equation (see Vincenti & Kruger 
1965, cha. 10). Note that the conventional stress tensor is minus the stress tensor 
defined here. 

Appendix B 
We consider the effect of surface tension on the saturated gas pressure Po(l +pw)  

introduced in appendix A. Let po  be the saturated gas pressure corresponding to 
temperature T when the interface between the condensed phase and its gas is a plane. 
When the interface is curved because of the surface tension, the equilibrium (or 
saturated) pressure corresponding to the same temperature T will change to p 1  in 
the gas phase (subscript 1) and to p 2  in the condensed phase (subscript 2 ) ,  but since 
the phases are in equilibrium with each other, the specific Gibbs-free energy clr must 
be the same in both phases, namely 

where a is the surface tension, and r and r' are the principal radii of curvature of the 
condensed phase. Expanding both functions around po and noting that 

(aGl*), = V ,  

where V is the specific volume, we obtain 

p l - p o  = a  -+- - (: ItJ,". 
Here we have assumed that p ,  -po  and p z  -po are small. This is a valid assumption 
owing to the smallness of the surface effects (Landau & Lifshitz 1958, 5 141). This p1 
corresponds to Po( 1 +pw)  in appendix A, but when the temperature is well below the 
critical temperature, the specific volume V, of the gas is much larger than that of the 
condensed phase (KJ, and the difference p l - p o  will become very small. I n  the case 
of H,O for example, (p l -p , ) /po  N 0.6 x lo-* for T = 10 "C and r = r' = 20pm,  
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and (pl  -po)/po - 10-4 for T = 20 "C and r = r' = 10 pm. In view of this, we may 
take the saturated gas pressure over the plane interface, which is given by the Clausius- 
Clapeyron relation, as Po(l +p,) in most cases (Sone & Onishi 1978). 
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